
F. Chlebana
Feb 14 2007

CSL Operations Meeting

Status

Monitoring

Additional information collected at:

http://ncdf76.fnal.gov/ chlebana/daq/cslUpgrade/monitor/

Code Updates



Status

We did have two cases of truncated db files...

Tue Feb 13 10:00:01 CST 2007
Found corrupted db file in b0csl22

ar0391c9.010dphys.db

Tue Feb 13 10:00:01 CST 2007
Found corrupted db file in b0csl28

hr0391c9.0101phys.db

We should add the file time stamp to the “Truncated db file

recovery status”

Otherwise working well...

→ Most major operational issues are resolved?

→ Focus on robustness and monitoring



Review Functional Requirements for Monitoring

→ Inform shift crew of CSL related problems

• Message sent to Error Logger

• Should be simple: Identify CSL as the problem source

→ Guide shift crew through recovery procedure

• Error handler displays recovery procedure

Run Stopped due to CSL problem.

End current run, restart the CSL and start new run

→ Additional information for experts to be displayed on CSLMon.

• More detailed information displayed by CSLMon

• History of messages

• Log files



Status

Cron

WEB

Logger

Cron

Logger

Cron

Histo

Status

Histo

Status

Histo

Status

Handler
Error

Servlet

Receiver

CSLMon

LogMess

Status

Summary

Alarm

RTServer
Alarm

Summary

CSLMon receives in-

formation from various

sources

→ Receiver

→ Logger Status Files

CSLMon decides if the

shift crew should be no-

tified based on this infor-

mation

Can change decision al-

gorithm without requiring

a new version of the CSL

code.

Several people working on this and we should clarify who is doing

what and make sure we all agree on what we want to accomplish



Message Flow

• Receiver sends CSL Status, CSL Summary

• Loggers write status files

• CSLMon receives messages and reads files

→ Determines if there is a problem and sends Alarm to Error

handler

→ All Alarms originate from CSLMon

RC CSLMon

csl_mon_send

Summary

Shared Memory

Status

Smart Sockets

Logger

Receiver
Receiver

"LogMess"

Need to clarify the

content of the mes-

sages

Need to clarify at what

point the information

is written out



Merlin Smart Sockets CSL Messages

We have many messages that are defined as Merlin messages

* Mnemonic: CSL_RECEIVER_MSG_TRUNCATION; Code: 0xc230800000041
Text: Event truncation detected in partition %d. Maybe event size is too large.

* Mnemonic: CSL_RUN_BAD_EVENT_SUMMARY; Code: 0xc220200444445
Text: For partition %d, run %d, \n there were %d bad BORs, %d bad Events, %d bad EORs.

Sent out as smart socket messages to the Error Handler (From

the Receiver)...

Are they still used?

→ Do not think that they reflect the type of problems we have

with the new system.

→ Too much detail to be sent to the Error Handler



Review error conditions, assign severity and define recovery pro-

cedure

Error Condition

1) CSL_NEVENTSERROR > 2

2) CSL_NEVENTSERROR increasing

3) Unable to Log data

Error Level (Warning/Error/Severe)

1) Warning

2) Error

3) Error

Recovery Procedure/Message to Error Handler

1) ‘‘Level 3 Filter Error’’

2) ‘‘High rate of Bad events from L3’’

3) ‘‘Unable to Log data, Stop current Run

Restart CSL and start new run’’



CSLMon

We should already have enough information to recog-

nize when we have bad events.

1) Make CSLMon aware of this error

2) Have CSLMon send Alarm to Error Handler

3) When CSLMon starts can is display a history of

messages



Code Updates

1) Make sure that the file boundary/file manifest is working

- Improve splitting of files

- Make sure all files are added to the manifest

2) Make sure that the logger switching problem is fixed

(Quietly throwing away event problem)

- CSL should block if it cannot write out events



3) Verify Bad Event Handling

- Bad events with no stream information should be written

to the local area on the reciever

- Bad events with stream information should be sent to the

logger and written to the data stream. They should not

be written to the error directory on the logger node. They

should be written to the error directory on the receiver node

4) Implement new error messages

- Error count > 2

- Error count increasing

- Error message if logger cannot write out data

Information already be available to CSLMon through

the Status/Summary message.



Are there any error conditions that we should be aware

of that cannot be recognized from the information already

available?

5) Test robustness of restart scripts

- Restart in the middle of a run

- Test CSL/L3 connection

We should not have to clean up L3 when the CSL is

restarted

- Add CSL restart to ProcMon

6) Make sure Calibration CSL is independent of main CSL

- Change smart sockets subject


